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A new method is developed for the measurement of thermal conductivity. It
combines characteristic advantages of steady-state and transient techniques but
avoids major drawbacks of both these classes of methods. On the basis of a
simple transient hot wire (THW) or transient hot-strip (THS) arrangement,
a direct indicating thermal-conductivity meter is realized by adding only one
temperature sensor. After a short settling time during which all transients die
out, the instrument operates under quasi-steady state conditions. No guard
heaters are required because outer boundaries are free to change with time. The
instrument’s uncertainty is provisionally estimated to be 3%.
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1. INTRODUCTION

In principle, the measurement of the thermal conductivity l requires a
knowledge of the local or time-dependent temperature distribution within
the material under test which provides the potential for heat transport.
When the temperature, T(rF), varies only locally, the thermal conductivity is
calculated from Fourier’s first law. Time-dependent temperature profiles,
T(t), are governed by Fourier’s second law, a second-order partial differ-
ential equation.

A one-dimensional temperature field, T(x), which can be characterized
by at least two thermometers at different fixed positions, x1 and x2, is used
for steady-state measurements. Realizing a static temperature field and



maintaining it at thermal equilibrium not only requires a heat source and a
heat sink but also additional guard heaters. The latter have to be adjusted
carefully during settling time and controlled permanently over a long
period in time (cf., e.g., Ref. 1).

For transient measurements, generally just one thermometer is needed
to characterize the time-dependent temperature T(t) at a known position r
within the specimen. In the transient hot wire (THW) and transient hot-
strip (THS) techniques, an embedded heat source, a thin wire or a metal
strip, respectively, works as a ‘‘self-heated thermometer.’’ Upon a step
change in its electrical input, it monitors the temperature excursion of
the time-dependent temperature field T(rF=rF1, t). The specimen is used as
the heat sink of the system. Instruments according to these techniques are
much faster than steady-state ones, but the reliability of the results depends
strongly on the proper observation of the initial and boundary conditions
(cf., e.g., Refs. 1 to 3).

To avoid the drawbacks of both instrument classes mentioned, their
characteristic principles of operation were brought together. Based on the
very simple setup of a hot-strip or hot wire instrument, only one additional
thermometer is needed to realize the fast quasi-steady state operating
instrument described below.

This paper can be divided into two parts. The first part starts with an
overview of the basic theories of the closely related THW and THS tech-
niques. Their working equations for the quasi-steady state mode are then
derived in the framework of an ideal model of unbounded specimens. In
practice, however, the (finite) specimen is subject to a prescribed tempera-
ture or heat flux distribution at its outer surfaces. Therefore, the theory is
extended. For the three different types of linear boundary conditions, quasi-
steady state working equations are introduced. In the second part, experi-
mental results are presented for the candidate reference material polysty-
rene, measured at two different boundary conditions.

2. THEORY

The ideal quasi-steady state mode works with a resistive heat source
that is entirely embedded inside the specimen without any thermal contact
resistance. The electrical input power is totally converted into a rate of heat
flow that is liberated immediately and exclusively to the finite (!) specimen.
The specimen is free to lose heat to the surroundings as long as boundary
conditions vary with time only. The temperature field of the specimen may
be far from thermal equilibrium; the field’s profile should be cylindrical.
Thus, a line- or strip-shaped source is considered in an arrangement that is
most similar to the known THW or THS setup.
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First, the working equation for the quasi-steady state mode for a hot
wire inside an unbounded specimen will be derived based on the existing
ideal theory. Unfortunately, there is no appropriate solution at hand for
the THS method. Therefore, it will be demonstrated by the use of similarity
reasons that the results obtained may be extended to the closely related
THS technique without major restrictions. Secondly, the system’s thermal
response to an outer surface of a finite specimen will be analyzed. Most
cases of practical use deal with one of three different kinds of boundary
conditions. These will be treated mathematically with expressions given in
terms of Bessel functions. These solutions are complete and exact but can
be handled only numerically. Therefore, closed form solutions for limiting
cases are derived which are most advantageous for practical use.

2.1. Quasi-Steady State Mode of a Line Source

The theoretical background of the THW and the THS techniques is
presented in detail elsewhere (cf., e.g., Refs. 1–10). Starting from the ideal
physical model of an infinitely long line heat source (z Q .) that is per-
fectly embedded inside an unbounded homogeneous isotropic medium at
(x=0, y=0), the temperature excursion from the initial temperature T0 at
any position (x, y) and any time t is obtained by integration of

TW(x, y, t) − T0=DTW(x, y, t)=
F0

4pLl
F

t

0
exp 1−

x2+y2

4a(t − tŒ)
2 dtŒ

t − tŒ
(1)

with regard to tŒ. This results in

DTW(r, t)=−
F0

4pLl
Ei 1−

r2

4at
2 , r2=x2+y2 (2)

Here, the strength of the heat source is given by F0/L. The thermal con-
ductivity and thermal diffusivity of the surrounding medium, the heat sink,
are denoted by l and a, respectively. The argument of the exponential
integral, −Ei(−d), is briefly given as 1/y2

W where

yW=`4at/r (3)

is called the non-dimensional time. For 1/y2
W ° 1, Eq. (2) may be approx-

imated by

DTW(r, t)=
F0

4pLl
5−c+ln 14at

r2
26 (4)
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which is the commonly used quasi-linear working equation of the THW
technique. Here, C=exp c (c: Euler constant).

With Eq. (4), the individual temperatures TW1 and TW2 of two ther-
mometers at different positions r1 and r2=er1, (e > 1), can immediately be
written as

TW1=TW(r1, t)=
F0

4pLl
1 ln t+ln

4a
Cr2

1

2+T0 (5)

TW2=TW(r2, t)=
F0

4pLl
1 ln t+ln

4a
C(er1)2

2+T0 (6)

Equation (4) becomes valid not before yW(r) % 6 [9]. Since the nondimen-
sional time is given in terms of the position of the individual temperature
stations, ri, Eqs. (5) and (6) become valid at different times, [yW(er1)]−2 >
[yW(r1)]−2. Their mutual time lag depends on e2.

Subtracting TW2 from TW1 eliminates from the model not only the
thermal diffusivity a but also the time dependence. The resulting stationary
working equation for the differential signal DŒT governs the quasi-steady
state mode of a THW measuring process:

DŒT=TW1 − TW2=
F0

2pLl
ln e (7)

For a given strength of the source and a prearranged distance of the tem-
perature stations, ln e, the quasi-steady state signal depends only on the
thermal conductivity of the sink. Thus, the measurand follows:

l=
F0

2pL DŒT
ln e (8)

This result, of course, is identical with the working equation of the related
steady-state radial heat-flow technique [2]. Hence, Eq. (8) is also valid
during thermal equilibrium (for full discussion, cf. Section 2.3).

In practice, a quasi-steady state instrument’s scale can be marked in
terms of the measurand l to realize a direct reading (cf. Figs. 11 or 13).
Figure 1 shows a FEM simulation of all three relevant temperatures of a
sample of given properties at isothermal boundary conditions. It can be
seen that the quasi-steady state mode starts working a little later than the
transient mode because of the mutual time shift mentioned above.

Alternatively to the two-thermometer arrangement described, it is suf-
ficient to use only one thermometer in addition to the hot wire. The wire
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Fig. 1. Excess temperature versus time of thermometers T1 and T2
along with quasi-steady state difference, DT (FEM simulation with
isothermal boundary conditions).

itself generally acts as a temperature sensor for T1 while T2 is provided by a
thermometer at distance r2 from the wire.

As has been shown in Ref. 5, the quasi-linear working equation of the
THS technique, Eq. (11), is most similar to Eq. (4). This close correlation
gives rise to the assumption that the quasi-steady state should also be pos-
sible with an analoguous modification to the THS setup.

2.2. Quasi-Steady State Mode of a Strip Source

In order to extend the above results to the THS method, first, a rela-
tionship for the temperature distribution of a strip source has to be derived
that is expressed in terms of the spatial coordinates x and y. In contrast to
the THW mathematical model, the THS model characterizes the temperature
profile only at a circumferencial line of radius r=D around the z-axis [4].

The THS model is based on a strip source of infinite length, Dz Q .,
and vanishing thickness, Dx Q 0, embedded in a homogeneous and isotro-
pic medium. Theoretically, the strip is treated like an array of parallel line
sources of full width D=2d ( − d [ y [+d) [10]. The temperature excur-
sion is governed by

DTS(x, y, t)=
F0

4 `p LDl
F

`4at

0
exp 1−

x2

s2
25erf 1y+d

s
2− erf 1y − d

s
26 ds

(9)
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where

erf(d)=
2

`p
F

d

0
exp(− s2) ds (10)

denotes the error function. A two-dimensional time-dependent solution to
Eq. (9) can, so far, be obtained only numerically.

By setting x equal to zero, Gustafsson [10] was able to solve this
integral analytically in the one-dimensional form DT(0, y, t). By averaging
the temperature distribution across the width of the strip to express the
mean temperature of the heat source, the second variable, y, also vanishes.
Thus, the final result, the quasi-linear working equation,

DTS(D, t)=
F0

4pLl
53 − c+ln 14at

D2
26 , (11)

is given in terms of the constant parameter D [5]. By recalling Eq. (4), the
similarity between the models of both transient techniques is apparent (cf.,
Fig. 2). Equation (11) is valid not before yS(r) % 2.

Obviously, the two-wire-arrangement as described above can be applied
analogously by using two strips of different widths D1 and D2=eD1. Then,
the difference in the individual transient temperatures of both strips is the
same as given above, Eq. (7). The second approach is the two-thermometer

Fig. 2. Ideal signals of THW and THS techniques versus nondimensional
time.
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arrangement consisting of only one strip and two separate temperature
stations (cf. Fig. 10). However, derivation of the working equation for this
mode of operation is more complex than for the wire: as can be seen from
Eq. (11), the non-dimensional time of a THS experiment usually is defined
as yS=`4at/D. This relation however, is, strictly speaking, no longer a
local function like Eq. (3). Thus, the two-dimensional temperature profile
generated by a strip cannot be derived either from Eq. (11) or from Eq. (9).

A closer look at the curves of equal temperatures around a line heat
source inside an unbounded homogeneous and isotropic medium shows a
family of concentric circles (cylinders) that are spread over the xy-area as
ln(1/r2). For a strip source it was pointed out in Ref. 5 that the isothermal
curves change their shape from (near-)elliptical to (near-)circular with
increasing distance from the source. At r \ D and times y −2

S ° 1, the iso-
thermal curves can practically be treated as circles (cf., Eq. (11); this rela-
tion is valid only if D represents the radius of a circular isothermal curve.).
This heuristic approach is now verified in a more rigorous way than given
in Ref. 5.

To derive a first-order approximate solution to Eq. (9), first, Eq. (10)
is denoted briefly:

DTS(x, y, t)=
A
d

F
`4at

0
fx fy ds (12)

Secondly, fy, the specific THS term, is rewritten as

fy=erf 1y
s

+
d
s
2− erf 1y

s
−

d
s
2=fy+ − fy − (13)

and expanded to individual Taylor series

fy+=erf 1y
s
2+

2

`p

d
s

exp 1−
y2

s2
2−

2

`p
1d

s
22 y

s
exp 1−

y2

s2
2

+
2

3 `p
1d

s
23 52

y2

s2 − 16 exp 1−
y2

s2
2+ · · · (14)

fy − =erf 1y
s
2−

2

`p

d
s

exp 1−
y2

s2
2−

2

`p
1d

s
22 y

s
exp 1−

y2

s2
2

−
2

3 `p
1d

s
23 52

y2

s2 − 16 exp 1−
y2

s2
2− · · · (15)
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Subtracting term-by-term results in

fy+ − fy − =
4

`p

d
s

exp 1−
y2

s2
2+

4

3 `p
1d

s
23

exp 1−
y2

s2
23 52

y2

s2 − 16+ · · ·
(16)

The first two nonzero terms are retained and substituted into Eq. (9):

DTS(x, y, t) %
4A

`p
F

`4at

0
exp 1−

x2

s2
2

×51
s

exp 1−
y2

s2
2+

1
3

d2

s3
12

y2

s2 − 12 exp 1−
y2

s2
26 ds (17)

Setting s=`4a(t − tŒ) and recalculating, it finally follows that

DTS(x, y, t) %
F0

4pLl
F

t

0
exp 1−

x2+y2

4a(t − tŒ)
2

×51+
1
3

d2

4a(t − tŒ)
12

y2

4a(t − tŒ)
− 126 dt

t − tŒ
(18)

This relation is now compared with Eq. (1).
The higher order correction term d2/`4a(t − tŒ) under the integral

sign vanishes for d Q 0 which is the case for a (single) line source (cf.
Eq. (1)), and/or for large times t, i.e., small values of 1/y2

S=d2/(at).
In Ref. 5 it has been shown that the latter condition is reasonably well
satisfied for distances r \ 2d=D from the center line of the strip, i.e., all
isothermal curves Ti(ri \ D, t) can be regarded as sufficiently circular (cf.
Figs. 3 and 4). Thus, Eq. (11) may be rewritten to

DTS(r \ D, t)=
F0

4pLl
53 − c+ln 14at

r2
26 (19)

Again, the above discussed result, the working equation for the quasi-
steady state mode, Eq. (8), can easily be obtained. A finite-element analysis
(FEM) confirms Eq. (19).

2.3. Boundary Conditions

The quasi-linear working equations, Eqs. (7) and (8), are derived
under the assumption of a closed thermodynamic system in which the
source is continuously liberating its heat entirely and immediately to the
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Fig. 3. Family of isothermal curves generated
by a strip heat source (ideal model).

Fig. 4. Quasi-three-dimensional temperature profile of a strip source
(ideal model).
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surrounding sink where it is stored totally. In practice, however, not only
the sink (specimen) responds to the heat emitted by the source (wire or
strip) but also the source itself and the surroundings of the setup. The
source stores heat due to its non-vanishing heat capacity, and the
surroundings absorb heat from the outer surfaces of the finite sink. Thus,
whenever dealing with finite specimens, boundary conditions have to be
taken into account. At its outer surface, S, a specimen thermally interacts
with the surroundings by conduction, convection, and radiation. Generally,
these three effects depend on position and time in a complex way. In tran-
sient measurement practice, however, an attempt is made to subject the
specimen to steady-state conductive boundary conditions that are either
(near-)adiabatic3 or, in most cases, (near-)isothermal.

3 The prefix ‘‘near’’ means ‘‘as close as practically possible.’’

To simplify matters, here, it is provided that (1) the temperature dif-
ference between the specimen and the surroundings is not great and (2) the
surroundings are kept at steady-state conditions. From (1) it follows that
the power of temperature that enters the related boundary condition is
equal to unity, thus, boundary conditions are linear, i.e., only conductive
and convective heat transfer need to be considered. (2) The boundary con-
ditions are homogeneous. Then three different kinds of linear homoge-
neous boundary conditions have to be examined in conjunction with the
quasi-steady state mode:

1. the temperature is prescribed (isothermal): T=0 on S (20)

2. the heat flux is prescribed (adiabatic):
“T
“r

=0 on S (21)

3. the convection boundary: l
“T
“r

+aT=0 on S (22)

In Eq. (22), a denotes the coefficient of heat transfer.
Most cases of practical interest deal with one of the three ways given

to lose heat. The existing theory on the temperature profile of a continuous
line source embedded in a cylindrical specimen of finite radius R provides
mathematical expressions for all three boundary conditions. These particu-
lar solutions to Fourier’s second law are exact, but not in closed form.
They are given by Tautz [11] in terms of first-kind Bessel functions of zero
order and first order, J0 and J1, respectively (see below). By using these
equations, the behavior of the quasi-steady state mode can only be cal-
culated numerically and represented graphically. In minimum, twenty terms
of the series have to be retained to ensure sufficient convergence. For a
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Table I. Model Parameters for Numerical
Evaluation of Eqs. (23) and (27)

Quantity Value

r1 3.5 mm
r2 4.5 mm
R 30 mm
L 100 mm
T0 23 K
F0 0.2 W
l 1.0 W · m−1 · K−1

a 0.5 mm2 · s−1

given model parameter set (see Table I), the individual temperature excur-
sions of two thermometers, T1 and T2, at different stations have been cal-
culated. These functions are plotted along with their mutual differences,
DT, in Figs. 5, 6, and 9. It can be seen that, after a relatively short settling
time, the quasi-steady state mode not only works during the quasi-linear
transient state but also through the long-term states of the three different
boundary conditions and their intervening transition phases.

Fig. 5. Calculated temperature excursions of two sensors, T1 and T2, at
different distances from a line heat source at isothermal boundary condi-
tions (cf. Eq. (23)). DT denotes the quasi-steady state differential signal of
both sensors.
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Fig. 6. Calculated temperature excursions of two sensores, T1 and T2, at
different distances from a line heat source at adiabatic boundary conditions
(cf. Eq. (27)). DT denotes the quasi-steady state differential signal of both
sensors, Ta is the calorimeter line.

Restricting to the transient and the long-term states, closed form
partial solutions are readily at hand to demonstrate the quasi-steady state
behavior analytically.

2.3.1. Isothermal Boundary

The temperature, T i
0, of the boundary surface S at a distance r=R

from the line source is maintained constant, i.e., the outer surface is open
for potential outward heat transfer. In practice, this is (nearly) the case for
the specimen to be in good contact with a massive high-conductive metal
heat sink of uniform temperature. The internal temperature distribution
T(r, t) of the specimen is governed by

T i(r, t)=T i
0+

F0

4pLl
ln 1R

r
22

− 4 C
.

n=1

J0(mnr/R)
m2

n J2
1(mn)

5 F0

4pLl
+

1
2

T i
0 mn J1(mn)6 exp 1−

m2
nat

R2
2 (23)

The eigenvalues are J0(m)=0 and J1(m)=0.
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From the foregoing result, a closed form solution to the problem
stated above can be achieved for the limiting case t Q .. Then, the sum on
the right-hand side vanishes and Eq. (23) reduces to

T i
.=T i

0+
F0

4pLl
ln 1R

r
22

(24)

Obviously, the temperature excursion now does no longer depend on time.
Equation (24) represents the working equation of the steady-state mode.
This mode becomes apparent when the entire rate of heat flow generated
by the source leaves the cylindrical specimen on S, F0=FS.

For the early stage of the temperature rise considered, as long as the
rate of heat flow passing through S is negligible, FS % 0, there is practically
no dependence on the boundaries. As has been shown elsewhere (e.g.,
Refs. 11 and 12), virtually, this is the case of an infinite specimen, repre-
sented by Eq. (2) and Eq. (4), respectively.

In summary, there are two analytical expressions, Eqs. (24) and (4),
that, although piecewise valid, closely approximate the internal tempera-
ture distribution:

DT i(r, t) % ˛ F0

4pLl
1 ln 14at

r2
2− c2 for tmin < t < tsec

F0

4pLl
ln

R2

r2 for t > tsec

(25)

For the characteristic time tsec, Healy et al. [11] give an approximation by
constructing a point (of intersection) that is common to both functions,
Eq. (25) (cf. Fig. 5):

tsec=
C
4

R2

a
(26)

The behavior of the quasi-steady state mode at isothermal boundaries can
now be evaluated analytically: by subtracting the temperatures, DT i(r, t),
at two different positions, r=r1 (first thermometer) and r=er1 (second
thermometer), Eq. (7) is regained individually for both intervals of Eq. (25).

As has already been pointed out, there is no appropriate solution for
a THS experiment. Here, only an FEM analysis can furnish (numerical)
results. Figure 1 shows that the quasi-steady state behavior is the same as
for the wire (cf. Section 2.2).

Quasi-Steady State Technique to Measure Thermal Conductivity 1303



2.3.2. Adiabatic Boundary

When no heat enters or leaves the outer surface S of a specimen,
FS=0, boundary conditions are described as adiabatic. In practice, this is
(nearly) the case for the entire specimen to be surrounded by an effective
thermal insulation (e.g., fiber board, vacuum). The temperature excursion
is governed by:

Ta(r, t)=Ta
0+

F0

4pLl
54at

R2 +
r2

R2+ln 1R
r
22

−
3
2

− 4 C
.

n=1

J0(mnr/R)
m2

n J2
0(mn)

exp 1−
m2

nat
R2

26

(27)

The eigenvalues are the same as given above. Again, for times t Q ., the
sum on the right hand side vanishes:

Ta
.=Ta

0+
F0

4pLl
54at

R2 +
r2

R2+ln 1R
r
22

−
3
2
6 (28)

As demonstrated by Fig. 7, this equation represents the (calorimeter-) line
of slope,

p=
F0

4pLl

4a
R2 (29)

Fig. 7. Calculated temperature excursions of two sensors, T1 and T2, at
different distances from a line heat source at adiabatic boundary condi-
tions, plotted versus linear time. The dotted lines indicate the ideal case.
The curve, Ta, is the calorimeter line (see text).
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and intercept,

q=Ta
0+

F0

4pLl
5 r2

R2+ln 1R
r
22

−
3
2
6 (30)

Obviously, during the long-term behavior (1) the temperature no longer
increases with ln t but linearly with time and (2) the slope, p, no longer
depends on the position, r, of the thermometer (cf. Eq. (2)) but on the
radial size, R, of the specimen. As expected, the setup now works like an
adiabatic calorimeter. With a/l=rcp and V=pR2L:

p=
F0

mcp
S cp=

F0

mp
(31)

Here, m denotes the specimen mass and cp is supposed to be constant.
In summary, it may be stated that the piecewise valid function

DTa(r, t) % ˛ F0

4pLl
1 ln 14at

r2
2− c2 for tmin < t < ttan

F0

4pLl
14at

R2 +ln
R2

r2 +
r2

R2 −
3
2
2 for t > ttan

(32)

sufficiently approximates the temperature field considered, except for the
transition phase. The characteristic time ttan can be obtained as follows:

The transition of the temperature function from the logarithmic,
T(ln t), to the linear, T(t), rise during an experiment under adiabatic
boundary conditions certainly is continuous and smooth. This behavior can
be shown by a graphical representation of Eqs. (27) and (28) (cf. Figs. 6, 7,
and 8). Though both partial functions of Eq. (32) do not share one or more
common points, there is one single point, (ttan, T), of each of the functions
whose individual slopes, “T/“t, are equal:

1
ttan

=
4a
R2 Z ttan=

R2

4a
(33)

This condition for the upper end point of the quasi-linear interval in time is
more rigorous than Eq. (26) because C > 1 (cf. Fig. 9).

Calculating once more the temperature difference of any two temper-
ature stations r1, r2=er1 < R from Eq. (32b) yields:

DŒTa=
F0

2pLl
1 ln e+

r2
1(1 − e2)

2R2
2 (34)
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This is the known result for the quasi-steady state mode plus an additional
term, r2(1 − e2)/2R2, that is negative because e > 1. With further knowledge
of its constituents, this term however, can easily be corrected for. It may
even be ignored when the distance between both thermometers is adjusted
small compared with the sample radius. Figure 8 shows that here again, the
quasi-steady state mode is preserved during the transition phase.

Calculated for the same parameters as above, Fig. 9 summarizes the
results obtained for the quasi-steady state mode at isothermal and adiabatic
boundary conditions.

2.3.3. Convection Boundary

At the boundary surface S, convection is present into a medium at
temperature TA. In practice, this is the case for a specimen that is immersed
in a well-stirred thermostated bath. The exact solution can once more be
found in Ref. 11:

Tc(r, t)=TA+
F0

4pLl
5 2

aR
+ln 1R

r
226

− C
.

n=1

F0
pLl

+2TA mn J1(mn)
m2

n[J2
0(mn)+J2

1(mn)]
J0
1mn

r
R
2 exp 1−

m2
nat

R2
2 (35)

with

mi=
1

aR
J0(mi)
J1(mi)

. (36)

Again, the sum vanishes for t Q . and in this convection limiting case the
resultant temperature is obtained as

Tc
.=TA+

F0

4pLl
1 2

aR
+ln

R2

r2
2 . (37)

For large values of the coefficient of heat transfer, a, the related term
vanishes and Eq. (24) is regained, i.e., the steady-state mode.

It is apparent now that the quasi-steady state mode works at convec-
tive boundaries as well as at the other two boundaries discussed above.

3. EXPERIMENTS

As has already been pointed out, there are different promising arran-
gements to realize the quasi-steady state mode of operation. Experiments
have been performed using (1) a hot wire cell of 150 mm in length that
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Fig. 8. (Insert graph of Fig. 7.) Transition temperature curve from the
ideal behavior to the adiabatic limiting case for sensor T1.

Fig. 9. Calculated temperature excursions of two sensors, T1 and T2, at
adiabatic (cf. Eq. (23)) and isothermal (cf. Eq. (27)) boundary conditions,
respectively. DTa, i indicates the quasi-steady state signal for both cases
(cf. Eq. (7)).
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contains an additional cold wire at a distance r2=4.5 mm [10] and (2) a
THS arrangement where two parallel platinum (cold) wires (r0=0.005 mm)
were added as the thermometers T1 and T2. For the latter setup, a nickel
strip of D=3 mm, L=100 mm, and a thickness n=5 mm was used. The
temperature sensors are fixed precisely at distances r1=3.5 mm and
r2=4.5 mm, respectively, from the long axis of the strip. The measure-
ments were performed first at near-isothermal (Figs. 10 and 11) and than
at near-adiabatic boundary conditions (Figs. 12 and 13) on the candidate
reference material polystyrene, PS158K, manufactured by BASF AG. The
signals were evaluated using the working equations Eqs. (7) and (8). In
Figs. 10 and 12 the THS signals are plotted versus linear and logarithmic
time, respectively. Figures 11 and 13 show the resulting differential curves
as thermal conductivity vs. time. As has been predicted this kind of signal
can be used to build an indicating thermal conductivity meter.

The quasi-steady state mode results were verified against those
obtained from guarded hot-plate measurements on samples cut from the
same stock. A first estimate of the uncertainty yields 3% at k=2 for the
new technique.

Fig. 10. Experimental quasi-steady state mode signal, DT, and related
individual temperature signals, T1 and T2, of two cold wires vs. ln t
measured at 23°C on polystyrene, PS158K, at isothermal boundary
conditions.
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Fig. 11. Experimental quasi-steady state mode signal measured at 23°C
on polystyrene, PS158K, plotted as thermal conductivity versus time
(cf. Fig. 10).

Fig. 12. Experimental quasi-steady state mode signal, DT, and related
individual temperature signals, T1 and T2, of two cold wires vs. ln t
measured at 23°C on polystyrene, PS158K, at adiabatic boundary
conditions.
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Fig. 13. Experimental quasi-steady state mode signal measured at 23°C
on polystyrene, PS158K, plotted as thermal conductivity versus time (cf.
Fig. 12).

A special hot-strip setup which is applicable for transient, quasi-
steady, and steady-state measurements is now under construction (Fig. 14).
Between two Kapton foils, there are integrated a hot-strip and two tem-
perature sensors. To generate the prescribed constant rate of heat flow the
strip is made of manganine because of the constant electrical resistance of
this alloy. The two thin parallel ‘‘cold’’ wires are made from platinum.
Their active regions are located inside the end-effect free center zone of the
temperature profile of the strip.

Fig. 14. Heater/sensor foil for the quasi-steady state mode of opera-
tion. The strip (center) is made from manganine; both temperature
sensors (cold wires) are made from platinum.
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4. SUMMARY

The quasi-steady state mode to the transient hot wire and the transient
hot-strip techniques has been introduced for the first time. Only one addi-
tional temperature sensor is needed for the THW or THS setup to generate
a differential signal which is a time-invariant measure of the thermal con-
ductivity of the material under test. The signal, first settled, practically
remains unaffected from homogeneous isothermal, adiabatic, and convec-
tive boundary conditions. Thus, the newly developed mode links together
the transient with the steady-state technique during the same experiment. It
combines the advantages of both standard transient techniques.

To demonstrate the quasi-steady state mode of operation, first the
known mathematical model of the THW method is extended slightly to
derive the working equation for the new technique. In the case of the THS
technique, this short and direct path cannot be followed because of an
unsolved integral which governs the two-dimensional temperature field
generated by a strip source. By expanding the specific THS term under the
integral sign into a series, it can be shown from similarity reasons that the
working equation derived is valid for the quasi-steady state THS technique
as well. Secondly, it is shown that under the boundary conditions of prac-
tical interest the quasi-steady state mode can work without any alterations.
Since temperature measurements can be carried out within a center region
of the heat source, end effects are eliminated.

The fundamental results obtained theoretically are already confirmed
by numerical and experimental investigations. Others will be verified soon.
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